Cluster Sampling Filters for Non-Gaussian Data Assimilation
نویسندگان
چکیده
This paper presents a fully non-Gaussian version of the Hamiltonian Monte Carlo (HMC) sampling filter. The Gaussian prior assumption in the original HMC filter is relaxed. Specifically, a clustering step is introduced after the forecast phase of the filter, and the prior density function is estimated by fitting a Gaussian Mixture Model (GMM) to the prior ensemble. Using the data likelihood function, the posterior density is then formulated as a mixture density, and is sampled using a HMC approach (or any other scheme capable of sampling multimodal densities in high-dimensional subspaces). The main filter developed herein is named cluster HMC sampling filter (C`HMC). A multi-chain version of the C`HMC filter, namely MC-C`HMC is also proposed to guarantee that samples are taken from the vicinities of all probability modes of the formulated posterior. The new methodologies are tested using a quasi-geostrophic (QG) model with double-gyre wind forcing and bi-harmonic friction. Numerical results demonstrate the usefulness of using GMMs to relax the Gaussian prior assumption in the HMC filtering paradigm.
منابع مشابه
An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation
This paper aims to investigate several new nonlinear/non-Gaussian filters in the context of the sequential data assimilation. The unscentedKalman filter (UKF), the ensemble Kalman filter (EnKF), the sampling importance resampling particle filter (SIR-PF) and the unscented particle filter (UPF) are described in the state-space model framework in the Bayesian filtering background. We first evalua...
متن کاملMedical Image Retrieval Based On the Parallelization of the Cluster Sampling Algorithm
Cluster sampling algorithm is a scheme for sequential data assimilation developed to handle general non-Gaussian and nonlinear settings. The algorithm relaxes the Gaussian prior assumption widely used in the data assimilation context to approximate the prior distribution obtained by integrating the posterior distribution in previous assimilation cycles. The algorithm can be in general used to s...
متن کاملA Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation
Data assimilation combines information from models, measurements, and priors to obtain improved estimates of the state of a dynamical system such as the atmosphere. Ensemble-based data assimilation approaches such as the Ensemble Kalman filter (EnKF) have gained wide popularity due to their simple formulation, ease of implementation, and good practical results. Many of these methods are derived...
متن کاملAn Improved Data Assimilation Scheme for High Dimensional Nonlinear Systems
Nonlinear/non-Gaussian filtering has broad applications in many areas of life sciences where either the dynamic is nonlinear and/or the probability density function of uncertain state is non-Gaussian. In such problems, the accuracy of the estimated quantities depends highly upon how accurately their posterior pdf can be approximated. In low dimensional state spaces, methods based on Sequential ...
متن کاملSequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques
[1] Estimated parameter distributions in groundwater models may contain significant uncertainties because of data insufficiency. Therefore, adaptive uncertainty reduction strategies are needed to continuously improve model accuracy by fusing new observations. In recent years, various ensemble Kalman filters have been introduced as viable tools for updating high-dimensional model parameters. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.03592 شماره
صفحات -
تاریخ انتشار 2016